MCS-GARRIER-5K-ADAPTER Description \& Specifications

Part \# MCS-CARRIER-5K-ADAPTER

Description

The Carrier 30 HX chiller package comes equipped with embedded 5 K thermistors in the motor. There are two (2) thermistors factory installed in each compressor. There are three (3) terminals for the thermistors. (S1, S2 \& C) Motor temperature is measured by leads connected to one of the S terminals and the C terminal. If a compressor motor thermistor fails, verify that there is a true short or open circuit at 1 to S 2 or S 2 to S 1 .

The thermistor's are not field serviceable. If both motor thermistors fail the compressor needs to be replaced.

Specifications

Requirements

1. Any compressor motor with $5 \mathrm{~K} \Omega$ embedded motor temperature sensors that matches Table 1 on next page.
2. A $5.26 \mathrm{~K} \Omega$ resistor, preferred 1% tolerance.
3. A sensor input terminal on MCS controls.
4. An appropriate length of 2 wire shielded cable.
5. MCS Magnum controller with Software Version 6.01 Q or later.
6. MCS-Connect Software Version 6.01 Q or later.
7. MCS-Config Software Version 6.01 X or later.

MCS Magnum

The motor thermistor is wired to a sensor input on the Magnum or to a sensor input on a MCS-SI expansion board. The drawing below shows the actual wiring to MCS Sensor input.
See APP-052 FOR WIRING at mcs-controls.com

Temperature verses ohms Ω Table 1.0

Temperature	Resistance		Temperature	Resistance
-22	88,480		113	2,184
-13	65,205		122	1,801
-4	48,536		131	1,493
5	35,476	140	1,244	
14	27,663		149	1,041
23	21,163		158	876
32	16,325	167	740	
41	12,696	176	628	
50	9,950	185	535	
59	7,856	194	458	
68	6,246		203	393
77	5,000	212	339	
86	4,028	221	294	
95	3,266		230	255
104	2,663		239	222

Packaging

Ship Weight
.005 lb (approx)
Box Dimensions
$6.75 \times 4.25 \times 2.25$ " (approx)

