Training Manual

MAGNUM & MCS-8 Micro Controller Systems

Simplified Description and Troubleshooting

Magnum and MCS-8 Micro Controller Systems Simplified Description and Troubleshooting Revision 2.03

The MCS Commitment

Our commitment is to provide practical solutions for the industry's needs and to be both a leader and a partner in the effective use of microprocessor controls.

Micro Control Systems, Inc. 5580 Enterprise Parkway Fort Myers, Florida 33905 USA Phone: (239) 694-0089 Fax: (239) 694-0031 www.mcscontrols.com

Information contained in this manual has been prepared by Micro Control Systems, Inc. and is company confidential and copyright © protected 2009. Copying or distributing this document is prohibited unless expressly approved by MCS.

Table of Contents

Section 1 – Magnum Micro Controller Systems

Troubleshooting General Dead Board Symptoms
Troubleshooting Sensor Input Problems7
Troubleshooting Relay Output Problems
Troubleshooting Lost I/O Communication Problems9

Appendix G – Entering Authorization Codes to Log In and Out of a Magnum10
Appendix H – Manually Turning On and Off a Magnum, MCS-I/O or RO8 Relay Output
Appendix I – Determining and Changing the Network Address of a Magnum
Appendix J – Analog Sensor Input Reference Table
Appendix K – Resolving MCS-I/O and RO8 Snubber Network Leakage Issues

Table of Contents

Section 2 – MCS-8 Micro Controller Systems

Troubleshooting General Dead Board Symptoms	19
Troubleshooting Sensor Input Problems	20
Troubleshooting Relay Output Problems	21
Troubleshooting Lost I/O Communication Problems	22
Troubleshooting LCD Problems	23
Troubleshooting MCS-UPC Problems	24

Appendix A – Entering Authorization Codes to Log In and Out of a MCS-8	25
Appendix B – Manually Turning On and Off a MCS-8, I/O or RO8 Relay Output	26
Appendix C – Determining and Changing the Network Address of a MCS-8	27
Appendix D – Analog Sensor Input Reference Table	28
Appendix E – MCS-UPC Status LED Code Descriptions	29
Appendix F – Resolving MCS-8, I/O and RO8 Snubber Network Leakage Issues	30

Section 1

MAGNUM Micro Controller Systems

Appendix G Entering Authorization Codes to Log In and Out of a Magnum

Appendix G (continued) Entering Authorization Codes to Log In and Out of a Magnum

The Magnum will tell you if it accepted your code and the level of authorization. For example, if you entered a valid factory authorization code you will see the following:	09:56 Password Level – Factory Press ' MENU ' Key 1 2 3
If you entered an invalid authorization code you will see the following:	09:56 Password Level – VIEW ONLY Invalid Pin Press ' MENU ' Key 1 2 3
Once you are logged in you can log out immediately by simply entering any invalid authorization code. If you are logged in and no keys are pressed for more than 15 minutes the Magnum will automatically log you out, warning you shortly before with how many seconds remaining as shown here:	Press Any Key to Avoid Auth Log Out 60

Appendix H Manually Turning On and Off a Magnum, MCS-I/O or RO8 Relay Output

Note: If a relay is in a Lockout state you cannot manually turn it on or off. First, after logging into the Magnum with your authorization code (see Appendix G), use the arrow keys to navigate to Outputs :	09:56 Main Menu -Status -Setpoints -Outputs -Serv Tools -Inputs -Lckout RST -Alarms -Lckout ALM -Graphs -Passwords Help
Next, use the up and down arrow keys to highlight the relay you want to turn on or off:	09:56Outputs◀▶RelaysStatusM-1COMP1-1M-2LOAD1-1OffM-3UNLOD1-1OffM-4LLS1-1AnlogPG↑PG↓
Now press the Enter key. You should see something similar to the following:	09:56 Outputs <u>Relays Status</u> M- COMP1-1 M- Manual AUTO M- Status M- H- LST-T Anlog PG↑ PG↓

Appendix H (continued) Manually Turning On and Off a Magnum, MCS-I/O or RO8 Relay Output

Use the up and down arrow keys to cycle through the three modes for the relay output: AUTO , MANON or MANOFF Stop when you reach the one you want:	09:56 Outputs Relays Status M- COMP1-1 M- M- M- Status M- Status M- Anlog PG↑ PG↓
Finally, press the Enter key to make the change. In our example the relay output is now manually turned on as shown here: Remember to return the relay output to AUTO mode when you are done!	09:56 Outputs Relays Status M-1 COMP1-1 On M- M- M- Anlog PG↑ PG↓

Appendix I Determining and Changing the Network Address of a Magnum

First, at the Main Menu use the arrow keys to navigate to Serv Tools :	09:56 Main Menu -Status -Setpoints -Outputs -Serv Tools -Inputs -Lckout RST -Alarms -Lckout ALM -Graphs -Passwords Help
Next, press the Enter key. You will see the following:	09:56 Serv Tools -RS-485 Network 1 -Ethernet Network -System Info -Time / Date -Display PG↑ PG↓
Use the up and down arrow keys to highlight Address :	09:56 RS-485 Setup Protocol MCS Address 1 Baud Rate 19200 Back

Appendix I (continued) Determining and Changing the Network Address of a Magnum

Now press the Enter key. You should see something similar to the following:	09:56 RS-485 Setup Protocol MCS Ad Address Ba 1 0 Back
Use the up and down arrow keys to select the Address number:	09:56 RS-485 Setup Protocol MCS Ad Address Ba 2 0 Back
Finally, press the Enter key to make the change. In our example the RS-485 network address has been changed from 1 to 2:	09:56 RS-485 Setup Protocol MCS Address 2 Ba Change Made Back

Appendix J Analog Sensor Input Reference Table

To troubleshoot analog sensor input problems and determine where the problem is, simply remove the sensor input connector block of the input you want to test and plug in a MCS-SENSOR-TEST block. If you do not have a MCS-SENSOR-TEST block you can connect a 100K ohm 1% ¹/₄ watt resistor between the +5 and S1 pins of the suspect sensor input on the board with the original sensor connector block removed.

After you have done this, compare the reading displayed by the Magnum with the table of the most common sensor types on the right. If the reading is close to what is found in the table for that particular sensor type you can safely assume that the board is functioning normally and that the problem lies with the sensor itself of the wiring from the sensor to the board.

Sensor Type	Reading
CT100	57.0A
CT250	143.0A
CT500	287.0A
HUMD	54.0%
T100	77.0F
Ti150A	75.0P
Ti200	100.0P
Ti500	250.0P
Ti667A	334.0P

Appendix K Resolving MCS-I/O and RO8 Snubber Network Leakage Issues

Each relay output on a MCS-I/O and RO8 board is protected by the use of on-board snubber networks. These networks consist of a resistor and capacitor in series connected from the common side of each relay to the normally open and normally closed sides. Its purpose is to suppress or "snub" the electrical arc that is produced when relay contacts open and close. Electrical arcs can shorten the useful life of a relay and can also cause the electronics on the controller board to malfunction.

In some cases the use of these snubber networks can cause an outbound device, such as a relay, to stay on even when the controlling relay on the MCS-I/O or RO8 board is turned off. This can occur in situations where the outbound device requires very little ac current to keep it on once it is energized. Because snubber networks normally pass a small amount of current when the circuit it is protecting is switched off, enough current may pass through these networks to keep the outbound relay on, even though the controlling relay is turned off.

An easy solution to this problem is to rewire the relay output as shown in the diagram to the right. As you can see, wiring the circuit in this way causes the outbound device to have the same voltage potential on both sides when it is not energized.

Section 2

MCS-8 Micro Controller Systems

Board Symptoms

Appendix A Entering Authorization Codes to Log In and Out of a MCS-8

First, press the SERVICE DIAGNOSTICS key several times until the following screen appears:	AUTHORIZATION ENTER CHG/OPTION
Next, press the ENTER key. You will see the following screen:	ENTER AUTH #XXXX THEN 'ENTER' KEY
Now enter the proper four-digit authorization code. Each X is changed to a 0 as numbers are entered. After you have keyed in the numbers, press the <i>ENTER</i> key.	ENTER AUTH #0000 THEN 'ENTER' KEY
The MCS-8 will tell you if it accepted your code and the level of authorization. For example, if you entered a valid factory authorization code you will see the following:	AUTH= FACTORY SEL NEXT OPTION
If you entered an invalid authorization code you will see the following:	AUTH # INVALID SEL NEXT OPTION
If no keys are pressed for more than 15 minutes the MCS-8 will automatically log you out. To log out immediately simply enter any invalid authorization code. You will then see the following:	AUTH LOGGED OFF SEL NEXT OPTION

Appendix B Manually Turning On and Off a MCS-8, I/O or RO8 Relay Output

Note: If a relay is in a Lockout state you cannot manually turn it on or off. First, after logging into the MCS-8 with your authorization code (see Appendix A), press the MANUAL OVERRIDES key until the following screen appears:	RELAY OUTS MANAL ENTER CHG/OPTION
Next, press the ENTER key. You will see something similar to the following, depending on what the first relay output is used for and what state it is currently in:	COMP1 OFF ENTER CHG/OPTION
Now press the <i>INCREASE</i> (+) or <i>DECREASE(-)</i> key until you have reached the desired relay output. Once there, press the <i>ENTER</i> key. For example:	FAN 1 OFF ENTER CHG/OPTION
Press the ENTER key to go into the change mode:	FAN 1 AUTO ENTER OR +-
Press the <i>INCREASE</i> (+) or <i>DECREASE</i> (-) key to cycle through the three modes for the relay output: AUTO, MANON or MANOFF Stop when you reach the one you want:	FAN 1 MANON ENTER OR +-
Finally, press the ENTER key to make the change. In our example the relay output is now manually turned on as shown here: Remember to return the relay output to AUTO mode when you are done!	FAN 1 MANON CHG MADE/NXT-SEL

Appendix C Determining and Changing the Network Address of a MCS-8

First, after logging into the MCS-8 with your authorization code (see Appendix A), press the SERVICE DIAGNOSTICS key until the following screen appears:	UNIT INFORMATION ENTER CHG/OPTION
Next, press the ENTER key. You will see which version of software the MCS-8 is currently running and the configurator type. For example:	SOFTWARE CFG CHL SO8.23-B 6
Now press the <i>INCREASE (+)</i> or <i>DECREASE(-)</i> key until the NETWORK ADDRESS screen appears. Here you will see what the network address of the MCS-8 currently is. For example:	NETWORK ADDRESS MCS-8 ADDRESS 1
Press the ENTER key to go into the change mode:	NETWORK ADDRESS +-CHNG/ENTER 1
Press the <i>INCREASE (+)</i> or <i>DECREASE (-)</i> key to cycle through addresses. Stop when you reach the one you want.	NETWORK ADDRESS +-CHNG/ENTER 2
Finally, press the ENTER key to make the change. For example, as shown here the MCS-8 network address has been changed from 1 to 2:	NETWORK ADDRESS CHANGE MADE 2

Appendix D Analog Sensor Input Reference Table

To troubleshoot analog sensor input problems and determine where the problem is, simply remove the sensor input connector block of the input you want to test and plug in a MCS-SENSOR-TEST block. If you do not have a MCS-SENSOR-TEST block you can connect a 100K ohm 1% ¹/₄ watt resistor between the +5 and S1 pins of the suspect sensor input on the board with the original sensor connector block removed.

After you have done this, compare the reading displayed by the MCS-8 with the table of the most common sensor types on the right. If the reading is close to what is found in the table for that particular sensor type you can safely assume that the board is functioning normally and that the problem lies with the sensor itself of the wiring from the sensor to the board.

Sensor Type	Reading
CT100	57.0A
CT250	143.0A
CT500	287.0A
HUMD	54.0%
T100	77.0F
Ti150A	75.0P
Ti200	100.0P
Ti500	250.0P
Ti667A	334.0P

Appendix E MCS-UPC Status LED Code Descriptions

Run LED	Error LED	Condition
2 flashes per second	Off	Normal
2 flashes per second	2 flashes alternating	Five minute auto-restart delay after system error
2 flashes per second	2 flashes in sync, then pause	Module is configured for a different baud rate that the rest of the network segment
2 flashes per second	3 flashes, then off	Module has just been formatted
2 flashes per second	4 flashes, then pause	Two or more devices on this network have the same ARC156 network segment address
2 flashes per second	On	Exec halted after frequent system errors or control programs halted
5 flashes per second	On	Exec start-up aborted, Boot is running
5 flashes per second	Off	Firmware transfer in progress, Boot is running
7 flashes per second	7 flashes per second, alternating	Ten second recovery period after brownout
14 flashes per second	14 flashes per second, alternating	Brownout

Appendix F Resolving MCS-8, I/O and RO8 Snubber Network Leakage Issues

Each relay output on a MCS-8, I/O and RO8 board is protected by the use of on-board snubber networks. These networks consist of a resistor and capacitor in series connected from the common side of each relay to the normally open and normally closed sides. Its purpose is to suppress or "snub" the electrical arc that is produced when relay contacts open and close. Electrical arcs can shorten the useful life of a relay and can also cause the electronics on the controller board to malfunction.

In some cases the use of these snubber networks can cause an outbound device, such as a relay, to stay on even when the controlling relay on the MCS-8, I/O or RO8 board is turned off. This can occur in situations where the outbound device requires very little ac current to keep it on once it is energized. Because snubber networks normally pass a small amount of current when the circuit it is protecting is switched off, enough current may pass through these networks to keep the outbound relay on, even though the controlling relay is turned off.

An easy solution to this problem is to rewire the relay output as shown in the diagram to the right. As you can see, wiring the circuit in this way causes the outbound device to have the same voltage potential on both sides when it is not energized.

